首页> 外文OA文献 >Self-aligned local electrolyte gating of 2D materials with nanoscale resolution
【2h】

Self-aligned local electrolyte gating of 2D materials with nanoscale resolution

机译:具有纳米级的2D材料的自对准局部电解质门控   解析度

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

In the effort to make 2D materials-based devices smaller, faster, and moreefficient, it is important to control charge carrier at lengths approaching thenanometer scale. Traditional gating techniques based on capacitive couplingthrough a gate dielectric cannot generate strong and uniform electric fields atthis scale due to divergence of the fields in dielectrics. This fielddivergence limits the gating strength, boundary sharpness, and pitch size ofperiodic structures, and restricts possible geometries of local gates (due towire packaging), precluding certain device concepts, such as plasmonics andtransformation optics based on metamaterials. Here we present a new gatingconcept based on a dielectric-free self-aligned electrolyte technique thatallows spatially modulating charges with nanometer resolution. We employ acombination of a solid-polymer electrolyte gate and an ion-impenetrablee-beam-defined resist mask to locally create excess charges on top of the gatedsurface. Electrostatic simulations indicate high carrier density variations of$\Delta n =10^{14}\text{cm}^{-2}$ across a length of 10 nm at the maskboundaries on the surface of a 2D conductor, resulting in a sharp depletionregion and a strong in-plane electric field of $6\times10^8 \text{Vm}^{-1}$across the so-created junction. We apply this technique to the 2D materialgraphene to demonstrate the creation of tunable p-n junctions foroptoelectronic applications. We also demonstrate the spatial versatility andself-aligned properties of this technique by introducing a novel graphenethermopile photodetector.
机译:在努力使基于2D材料的设备更小,更快和更高效的过程中,控制电荷载流子的长度接近纳米级非常重要。由于电介质中电场的发散,基于通过栅极电介质的电容耦合的传统选通技术无法在此规模上产生强而均匀的电场。这种场散度限制了周期性结构的门控强度,边界清晰度和节距大小,并限制了局部浇口的可能几何形状(由于导线封装),从而排除了某些器件的概念,例如基于超材料的等离激元和变换光学器件。在这里,我们提出了一种基于无电介质的自对准电解质技术的新门控概念,该技术允许以纳米分辨率对空间进行电荷调制。我们采用了固体聚合物电解质栅极和离子难穿透束定义的抗蚀剂掩模的组合,以在栅极表面上局部产生多余的电荷。静电仿真表明,在2D导体表面的掩模边界上,整个长度为10 nm时,$ \ Delta n = 10 ^ {14} \ text {cm} ^ {-2} $的载流子密度变化很大,从而导致穿过如此形成的结,耗尽区和$ 6 \ times10 ^ 8 \ text {Vm} ^ {-1} $的强平面内电场。我们将此技术应用于二维材料石墨烯,以演示用于光电应用的可调p-n结的创建。我们还通过介绍一种新颖的石墨烯醚光电探测器展示了该技术的空间通用性和自对准特性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号